fizyka-2017-maj-matura-stara-podstawowa. Wiktor Bieniek. Chemia 2023 Przykladowy Arkusz Cke Rozszerzona. Chemia 2023 Przykladowy Arkusz Cke Rozszerzona.
Zadanie 1. (0-1) Liczba 58⋅16−2 jest równa A. \({{\left( \frac{5}{2} \right)}^{8}}\) B. \(\frac{5}{2}\) C. 108 D. 10 Zobacz na stronie Zobacz na YouTube Zadanie 2. (0-1) Liczba \(\sqrt[3]{54}-\sqrt[3]{2}\) jest równa A. \(\sqrt[3]{52}\) B. 3 C. \(2\sqrt[3]{2}\) D. 2 Zobacz na stronie Zobacz na YouTube Zadanie 3. (0-1) Liczba \(2{{\log }_{2}}3-2{{\log }_{2}}5\) jest równa A. \({{\log }_{2}}\frac{9}{25}\) B. \({{\log }_{2}}\frac{3}{5}\) C. \({{\log }_{2}}\frac{9}{5}\) D. \({{\log }_{2}}\frac{6}{25}\) Zobacz na stronie Zobacz na YouTube Zadanie 4. (0-1) Liczba osobników pewnego zagrożonego wyginięciem gatunku zwierząt wzrosła w stosunku do liczby tych zwierząt z 31 grudnia 2011 r. o 120% i obecnie jest równa 8910. Ile zwierząt liczyła populacja tego gatunku w ostatnim dniu 2011 roku? A. 4050 B. 1782 C. 7425 D. 7128 Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie 5. (0-1) Równość \({{\left( x\sqrt{2}-2 \right)}^{2}}={{\left( 2+\sqrt{2} \right)}^{2}}\) jest A. prawdziwa dla \(x=-\sqrt{2}\) B. prawdziwa dla \(x=\sqrt{2}\) C. prawdziwa dla x=-1 D. fałszywa dla każdej liczby x. Treść dostępna po opłaceniu abonamentu. Zadanie 6. (0-1) Do zbioru rozwiązań nierówności (x4+1)(2−x)>0 nie należy liczba Treść dostępna po opłaceniu abonamentu. Zadanie 7. (0-1) Wskaż rysunek, na którym jest przedstawiony zbiór wszystkich rozwiązań nierówności 2−3x≥4 . Treść dostępna po opłaceniu abonamentu. Zadanie 8. (0-1) Równanie x(x2−4)(x2+4)=0 z niewiadomą x A. nie ma rozwiązań w zbiorze liczb rzeczywistych. B. ma dokładnie dwa rozwiązania w zbiorze liczb rzeczywistych. C. ma dokładnie trzy rozwiązania w zbiorze liczb rzeczywistych. D. ma dokładnie pięć rozwiązań w zbiorze liczb rzeczywistych. Treść dostępna po opłaceniu abonamentu. Zadanie 9. (0-1) Miejscem zerowym funkcji liniowej \(f\left( x \right)=\sqrt{3}\left( x+1 \right)-12\) jest liczba A. \(\sqrt{3}-4\) B. \(-2\sqrt{3}+1\) C. \(4\sqrt{3}-1\) D. \(-\sqrt{3}+12\) Treść dostępna po opłaceniu abonamentu. Zadanie 10. (0-1) Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f(x)=ax2+bx+c , której miejsca zerowe to: −3 i 1. Współczynnik c we wzorze funkcji f jest równy: Treść dostępna po opłaceniu abonamentu. Zadanie 11. (0-1) Na rysunku przedstawiono fragment wykresu funkcji wykładniczej f określonej wzorem f(x)=ax. Punkt A=(1,2) należy do tego wykresu funkcji. Podstawa a potęgi jest równa A. \(-\frac{1}{2}\) B. \(\frac{1}{2}\) C. -2 D. 2 Treść dostępna po opłaceniu abonamentu. Zadanie 12. (0-1) W ciągu arytmetycznym (an ) , określonym dla n≥1, dane są: a1=5 , a2=11. Wtedy A. a14=71 B. a12=71 C. a11=71 D. a10=71 Treść dostępna po opłaceniu abonamentu. Zadanie 13. (0-1) Dany jest trzywyrazowy ciąg geometryczny (24,6,a−1). Stąd wynika, że A. \(\frac{5}{2}\) B. \(\frac{2}{5}\) C. \(\frac{3}{2}\) D. \(\frac{2}{3}\) Treść dostępna po opłaceniu abonamentu. Zadanie 14. (0-1) Jeśli m = sin50° , to A. m = sin40° B. m = cos40° C. m = cos50° D. m = tg50° Treść dostępna po opłaceniu abonamentu. Zadanie 15. (0-1) Na okręgu o środku w punkcie O leży punkt C (zobacz rysunek). Odcinek AB jest średnicą tego okręgu. Zaznaczony na rysunku kąt środkowy α ma miarę A. 116° B. 114° C. 112° D. 110° Treść dostępna po opłaceniu abonamentu. Zadanie 16. (0-1) W trójkącie ABC punkt D leży na boku BC, a punkt E leży na boku AB. Odcinek DE jest równoległy do boku AC, a ponadto |BD|=10 , |BC|=12 i |AC|=24 (zobacz rysunek). Długość odcinka DE jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 17. (0-1) Obwód trójkąta ABC, przedstawionego na rysunku, jest równy A. \(\left( 3+\frac{\sqrt{3}}{2} \right)a\) B. \(\left( 2+\frac{\sqrt{2}}{2} \right)a\) C. \(\left( 3+\sqrt{3} \right)a\) D. \(\left( 2+\sqrt{2} \right)a\) Treść dostępna po opłaceniu abonamentu. Zadanie 18. (0-1) Na rysunku przedstawiona jest prosta k, przechodząca przez punkt A=(2,−3) i przez początek układu współrzędnych, oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox. Zatem A. \(tg\alpha =-\frac{2}{3}\) B. \(tg\alpha =-\frac{3}{2}\) C. \(tg\alpha =\frac{2}{3}\) D. \(tg\alpha =\frac{3}{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 19. (0-1) Na płaszczyźnie z układem współrzędnych proste k i l przecinają się pod kątem prostym w punkcie A=(−2,4) . Prosta k jest określona równaniem \(y=-\frac{1}{4}x+\frac{7}{2}\). Zatem prostą l opisuje równanie A. \(y=\frac{1}{4}x+\frac{7}{2}\) B. \(y=-\frac{1}{4}x-\frac{7}{2}\) C. \(y=4x-12\) D. \(y=4x+12\) Treść dostępna po opłaceniu abonamentu. Zadanie 20. (0-1) Dany jest okrąg o środku S=(2,3) i promieniu r=5 . Który z podanych punktów leży na tym okręgu? A. A = (−1,7) B. B = (2,−3) C. C = (3, 2) D. D = (5,3) Treść dostępna po opłaceniu abonamentu. Zadanie 21. (0-1) Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 3 razy dłuższa od krawędzi podstawy, jest równe 140. Zatem krawędź podstawy tego graniastosłupa jest równa A. \(\sqrt{10}\) B. \(3\sqrt{10}\) C. \(\sqrt{42}\) D. \(3\sqrt{42}\) Treść dostępna po opłaceniu abonamentu. Zadanie 22. (0-1) Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy A. \(\frac{\sqrt{3}}{2}\) B. \(\frac{\sqrt{2}}{2}\) C. \(\frac{1}{2}\) D. 1 Treść dostępna po opłaceniu abonamentu. Zadanie 23. (0-1) Dany jest stożek o wysokości 4 i średnicy podstawy 12. Objętość tego stożka jest równa A. 576π B. 192π C. 144π D. 48π A. B. C. D. Treść dostępna po opłaceniu abonamentu. Zadanie 24. (0-1) Średnia arytmetyczna ośmiu liczb: 3, 5, 7, 9, x, 15, 17, 19 jest równa 11. Wtedy A. x=1 B. x=2 C. x=11 D. x=13 A. B. C. D. Treść dostępna po opłaceniu abonamentu. Zadanie 25. (0-1) Ze zbioru dwudziestu czterech kolejnych liczb naturalnych od 1 do 24 losujemy jedną liczbę. Niech A oznacza zdarzenie, że wylosowana liczba będzie dzielnikiem liczby 24. Wtedy prawdopodobieństwo zdarzenia A jest równe A. \(\frac{1}{4}\) B. \(\frac{1}{3}\) C. \(\frac{1}{8}\) D. \(\frac{1}{6}\) Treść dostępna po opłaceniu abonamentu. Zadanie 26. (0-2) Rozwiąż nierówność 8x2−72x≤0 . Treść dostępna po opłaceniu abonamentu. Zadanie 27. (0-2) Wykaż, że liczba 42017 + 42018 + 42019 + 42020 jest podzielna przez 17. Treść dostępna po opłaceniu abonamentu. Zadanie 28. (0-2) Dane są dwa okręgi o środkach w punktach P i R , styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |∢APC|=α i |∢ABC|=β (zobacz rysunek). Wykaż, że α=180°−2β . Treść dostępna po opłaceniu abonamentu. Zadanie 29. (0-4) Funkcja kwadratowa f jest określona dla wszystkich liczb rzeczywistych x wzorem f(x)=ax2+bx+c . Największa wartość funkcji f jest równa 6 oraz \(f\left( -6 \right)=f\left( 0 \right)=\frac{3}{2}\) . Oblicz wartość współczynnika a. Treść dostępna po opłaceniu abonamentu. Zadanie 30. (0-2) Przeciwprostokątna trójkąta prostokątnego ma długość 26 cm, a jedna z przyprostokątnych jest o 14 cm dłuższa od drugiej. Oblicz obwód tego trójkąta. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (0-2) W ciągu arytmetycznym (an), określonym dla n≥1, dane są: wyraz a1= 8 i suma trzech początkowych wyrazów tego ciągu S3= 33 . Oblicz różnicę a16−a13 . Treść dostępna po opłaceniu abonamentu. Zadanie 32. (0-5) Dane są punkty A = (−4,0) i M = (2,9) oraz prosta k o równaniu y = −2x +10 . Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (0-2) Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (0-4) W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa \(\frac{5\sqrt{3}}{4}\) , a pole powierzchni bocznej tego ostrosłupa jest równe \(\frac{15\sqrt{3}}{4}\) . Oblicz objętość tego ostrosłupa. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z
Pierwiastki x1, x2 równania 2(x+2)(x-2)=0 spełniają warunekPostać iloczynowa trójmianu kwadratowego. Pierwiastki równania. Sprawdź serwis MatMat: http://m

Zadania z matury podstawowej z matematyki 2017 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Poniżej odnośniki do zadań: Maj 2017 Zadanie bez odpowiedzi i analizy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zadanie 34 (0-4) W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa , a pole powierzchni bocznej tego ostrosłupa jest równe . Oblicz objętość tego ostrosłupa. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 34" Zadanie 33 (0-2) Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 33" Zadanie 32 (0-5) Dane są punkty A=−(4,0) i M=(2,9) oraz prosta k o równaniu y=-2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC. Źródło CKE - Arkusz maturalny 2017 - poziom podstawowy Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 32" Zadanie 31 (0-2) W ciągu arytmetycznym (an), określonym dla n≥1, dane są: wyraz a1=8 i suma trzech początkowych wyrazów tego ciągu S3=33. Oblicz różnicę a16-a13. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 31" Zadanie 30 (0-2) Przeciwprostokątna trójkąta prostokątnego ma długość 26 cm, a jedna z przyprostokątnych jest o 14 cm dłuższa od drugiej. Oblicz obwód tego trójkąta. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 30" Zadanie 29 (0-4) Funkcja kwadratowa f jest określona dla wszystkich liczb rzeczywistych x wzorem f(x)=ax2+bx+c. Największa wartość funkcji f jest równa 6 oraz f(-6)=f(0)=3/2. Oblicz wartość współczynnika a. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 29" Zadanie 28 (0-2) Dane są dwa okręgi o środkach w punktach P i R , styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |APC| =α i |ABC| = β (zobacz rysunek). Wykaż, że α= 180°−2β. Źródło CKE: matura poziom podstawowy 2017 Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 28" Zadanie 27 (0-2) Wykaż, że liczba 42017+42018+42019+42020 jest podzielna przez 17. Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 27" Zadanie 25 (0-1) Ze zbioru dwudziestu czterech kolejnych liczb naturalnych od 1 do 24 losujemy jedną liczbę. Niech A oznacza zdarzenie, że wylosowana liczba będzie dzielnikiem liczby 24. Wtedy prawdopodobieństwo zdarzenia A jest równe A. 1/4 B. 1/3 C. 1/8 D. 1/6 Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 25" Zadanie 24 (0-1) Średnia arytmetyczna ośmiu liczb: 3, 5, 7, 9, x, 15, 17, 19 jest równa 11. Wtedy A. x=1 B. x=2 C. x=11 D. x=13 Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 24" Zadanie 23 (0-1) Dany jest stożek o wysokości 4 i średnicy podstawy 12. Objętość tego stożka jest równa A. 576π B. 192π C. 144π D. 48π Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 23" Zadanie 22 (0-1) Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS jest równy... źródło CKE Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 22" Zadanie 21 (0-1) Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 3 razy dłuższa od krawędzi podstawy, jest równe 140. Zatem krawędź podstawy tego graniastosłupa jest równa Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 21" Zadanie 20 (0-1) Dany jest okrąg o środku S=(2,3) i promieniu r=5. Który z podanych punktów leży na tym okręgu? A. A=(-1,7) B. A=(2,-3) C. A=(3,2) D. A=(5,3) Źródło CKE - Arkusz maturalny 2017 - poziom podstawowy Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 20" Zadanie 19 (0-1) Na płaszczyźnie z układem współrzędnych proste k i l przecinają się pod kątem prostym w punkcie A = (-2,4). Prosta k jest określona równaniem . Zatem prostą l opisuje równanie Źródło CKE - Arkusz maturalny 2017 - poziom podstawowy Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 19" Zadanie 18 (0-1) Na rysunku przedstawiona jest prosta k o równaniu y = ax, przechodząca przez punkt A = (2,-3) i przez początek układu współrzędnych, oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox. źródło CKE - Arkusz maturalny z matematyki - poziom podstawowy Zatem Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 18" Zadanie 17 (0-1) Obwód trójkąta ABC, przedstawionego na rysunku, jest równy źródło CKE - Arkusz maturalny z matematyki - poziom podstawowy Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 17" Zadanie 16 (0-1) W trójkącie ABC punkt D leży na boku BC, a punkt E leży na boku AB. Odcinek DE jest równoległy do boku AC, a ponadto |BD| =10 , |BC| =12 i |AC| = 24 (zobacz rysunek). Długość odcinka DE jest równa Czytaj dalej"Matura 2017 poziom podstawowy - zadanie 16"

D. 10 Zadanie 1.41. [matura, mag 2017, zad. l. (1 pkt)] Liczba 58 16-2 jest równa c. 108 Zadanie 1.42. [matura, maj 2017, zad. 2. (1 pkt)] Liczba jest równa c. 2žfî Zadanie 1.43. [matura, maj 2017, zad. 5. (1 pkt)] Równošé — 2) 2 = (2 + jest A. prawdziwa dla x = C prawdmwa dla x = —1 B. prawdziwa dla x = D. falszywa dla kaŽdeJ Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację pwz: 61%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 5. (0–2)Reszta z dzielenia wielomianu przez dwumian x − 2 jest równa 1. Oblicz wartość współczynnika poniżej kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. pwz: 45%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 6. (0–3)Funkcja ƒ jest określona wzorem dla każdej liczby rzeczywistej x. Wyznacz równanie stycznej do wykresu tej funkcji w punkcie P = (1,0). pwz: 26%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 7. (0–3)Udowodnij, że dla dowolnych różnych liczb rzeczywistych x, y prawdziwa jest nierówność pwz: 11%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 8. (0–3)W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz |∢ABC| = β. Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie że długość odcinka BE jest równa pwz: 12%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 9. (0–4)W czworościanie, którego wszystkie krawędzie mają taką samą długość 6, umieszczono kulę tak, że ma ona dokładnie jeden punkt wspólny z każdą ścianą π, równoległa do podstawy tego czworościanu, dzieli go na dwie bryły: ostrosłup o objętości równej 8⁄27 objętości dzielonego czworościanu i ostrosłup ścięty. Oblicz odległość środka S kuli od płaszczyzny π , tj. długość najkrótszego spośród odcinków SP, gdzie P jest punktem płaszczyzny π. pwz: 47%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 10. (0–4)Rozwiąż równanie cos2x + 3cosx = −2 w przedziale ⟨0,2π⟩. pwz: 23%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 11. (0–4)W pudełku znajduje się 8 piłeczek oznaczonych kolejnymi liczbami naturalnymi od 1 do 8. Losujemy jedną piłeczkę, zapisujemy liczbę na niej występującą, a następnie zwracamy piłeczkę do urny. Tę procedurę wykonujemy jeszcze dwa razy i tym samym otrzymujemy zapisane trzy liczby. Oblicz prawdopodobieństwo wylosowania takich piłeczek, że iloczyn trzech zapisanych liczb jest podzielny przez 4. Wynik podaj w postaci ułamka zwykłego. pwz: 28%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 12. (0–5)Wyznacz wszystkie wartości parametru m, dla których równaniema dwa różne rozwiązania rzeczywiste x1 i x2 , przy czym x1 < x2, spełniające warunek pwz: 40%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 13. (0–5)Wyznacz równanie okręgu przechodzącego przez punkty A = (−5,3) i B = (0,6), którego środek leży na prostej o równaniu x − 3y + 1 = 0. pwz: 60%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 14. (0–6)Liczby a, b, c są – odpowiednio – pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 27. Ciąg (a − 2, b, 2c + 1) jest geometryczny. Wyznacz liczby a, b, c. pwz: 24%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 15. (0–7)Rozpatrujemy wszystkie walce o danym polu powierzchni całkowitej P. Oblicz wysokość i promień podstawy tego walca, którego objętość jest największa. Oblicz tę największą objętość. Nadszedł czas, by oprócz rozwiązań bieżących matur pojawiały się na naszym kanale oraz stronach i na blogu nagrania z rozwiązanych arkuszy z lat Matura 2017. INFORMATYKA [ODPOWIEDZI, ARKUSZ CKE] Michał PawlikTrwa matura 2017. INFORMATYKA to jeden z dodatkowych przedmiotów, które mogli wybrać tegoroczni maturzyści. ODPOWIEDZI, ARKUSZ CKE, ROZWIĄZANIA - znajdziecie je na naszej stronie!ARKUSZ znajdziesz tutaj. Kliknij poniżej: Matura 2017. INFORMATYKA [ODPOWIEDZI, CKE ARKUSZ] Matura 2017. INFORMATYKA i inne przedmiotyW środę kolejne egzaminy tegorocznej matury, tym razem dodatkowe, a nie obowiązkowe. O godzinie 9 - WOS, o 14 - INFORMATYKA. Specjalnie dla Was nasi eksperci przygotowują rozwiązania ze wszystkich przedmiotów. Znajdziecie je tutaj:Sprawdź! W tym materiale będziemy dla Was mieli odpowiedzi z informatyki. Z nami sprawdzicie, jak poszła Wam matura 2017 z informatyki!Arkusz CKE w galerii zdjęć**********Matura 2017. INFORMATYKA - ODPOWIEDZI:ZE WZGLĘDU NA SPECYFIKĘ ZADAŃ MOGĄ BYĆ ONE PUBLIKOWANE Z MAŁYM OPÓŹNIENIEM. CIERPLIWOŚCI, WSZYSTKIE BĘDĄ ZROBIONE! Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. 267,07 cukru[kg]"20052701620062722620073172020083652320093076420103252120112 38 126,35 zł ODPOWIEDŹ DO 4. Odpowiedź. Zadanie 5. Zadanie 6. ODPOWIEDŹ 221najciemniejszy: 7ODPOWIEDŹ
Liczby pierwsze – Informatyka. Matura 2017 (maj). Zadanie 2. Liczby pierwsze. Parą liczb bliźniaczych nazwiemy dwie liczby pierwsze różniące się o 2. Liczbami bliźniaczymi są 11 i 13, gdyż obie liczby są pierwsze i różnica pomiędzy nimi wynosi 2. Para 13 i 15 nie jest parą liczb bliźniaczych, gdyż 15 jest liczbą złożoną
Matura 2017: Matematyka [ROZSZERZENIE]. Odpowiedzi i arkusz CKE w serwisie Edukacja Trwa matura 2017. Wtorek, 9 maja to jeden z jej najtrudniejszych etapów. Tym razem maturzyści mierzą się z matematyką na poziomie rozszerzonym. Wielu z nich zaraz po egzaminie zastanawia się jak im poszło i czy będą mogli znaleźć w internecie odpowiedzi oraz arkusz CKE matury 2017 z matematyki na poziomie rozszerzonym. Uspokajamy. Tak jak w przypadku poprzednich egzaminów, ODPOWIEDZI I ARKUSZE MATURY Z MATEMATYKI NA POZIOMIE ROZSZERZONYM 2017 opublikujemy w serwisie EDUKACJA na zaraz po zakończeniu egzaminu. ZAPRASZAMY!Zdajesz maturę poprawkową 2017 z matematyki?ZOBACZ: MATURA 2017 MATEMATYKA [ROZSZERZENIE] – ARKUSZ CKEWe wtorek, 9 maja o godzinie 9 tegoroczni maturzyści przystąpili do matury 2017 z matematyki na poziomie rozszerzonym. Z jakimi zadaniami przyszło im się mierzyć, czy test był trudny i czy udało się go rozwiązać na przysłowiową "szóstkę". Tuż po egzaminie będzie można to sprawdzić w serwisie EDUKACJA, gdzie opublikujemy ODPOWIEDZI i ARKUSZ CKE MATURY 2017 Z MATEMATYKI [POZIOM ROZSZERZONY]W zdecydowanej większości decyzja o wyborze matematyki na maturze wynika z chęci studiowania na uczelniach i kierunkach technicznych. Bez dobrego wyniku maturalnego pojedynku z matematyką na poziomie rozszerzonym, na dostanie się na wymarzone studia raczej liczyć maturzyści nie mogą. MATURA 2016 MATEMATYKA [POZIOM ROZSZERZONY] - ODPOWIEDZI I ARKUSZE NA maturalna batalię uczniowie rozpoczęli w czwartek, 4 maja 2017 roku. Maturzyści mają za sobą już trzy obowiązkowe egzaminy na poziomie podstawowym: z języka polskiego, matematyki i języka angielskiego (chyba, że ktoś wybrał inny język). W nowym systemie każdy uczeń ma obowiązek pisać egzamin z minimum jednego przedmiotu dodatkowego na poziomie rozszerzonym. Rozszerzenie z matematyki potrwa 180 minut. Arkusze wraz z odpowiedziami MATURY 2017 Z MATEMATYKI na poziomie rozszerzonym opublikujemy około godziny Z MATEMATYKI 2017 [ROZSZERZENIE]: KIEDY ODPOWIEDZI I ARKUSZ Z MATEMATYKI?Jak będzie w tym roku, nie wiadomo, ale pewne jest, że tuż po zakończeniu matury z matematyki, wszystkich tym, którzy będą chcieli spojrzeć prawdzie w oczy, damy taką możliwość. Tradycyjnie już w po zakończeniu egzaminu opublikujemy arkusz i odpowiedzi matury 2017 z matematyki na poziomie rozszerzonym. (arkusz około godziny pierwsze odpowiedzi zaś około godziny 13)MATURA Z MATEMATYKI 2017 [ROZSZERZENIE]: GDZIE ZNALEŹĆ ODPOWIEDZI I ARKUSZ Z MATEMATYKI?Jak zwykle odpowiedzi i arkusze testu maturalnego z matematyki 2017 na poziomie rozszerzonym opracowanego przez specjalistów Centralnej Komisji Egzaminacyjnej opublikujemy w serwisie EDUKACJAMATURA 2017 - HARMONOGRAM 2017 - CZĘŚĆ PISEMNA MATURA 2017 - HARMONOGRAM MATURY* 9 wtorekgodz. 9: matematyka – prgodz. 14: język łaciński i kultura antyczna – pp, język łaciński i kultura antyczna – pr* 10 środagodz. 9: wiedza o społeczeństwie – pp i wiedza o społeczeństwie – prgodz. 14: informatyka – pp oraz informatyka – pr* 11 czwartekgodz. 9: język niemiecki – ppgodz. 14: język niemiecki – pr oraz język niemiecki – dj* 12 piątekgodz. 9: biologia – pp oraz biologia – prgodz. 14: filozofia – pp oraz filozofia – pr13, 14 – sobota, niedziela - WOLNE* 15 poniedziałekgodz. 9: historia – pp oraz historia – prgodz. 14: historia sztuki – pp i historia sztuki – pr* 16 wtorekgodz. 9: chemia – pp oraz chemia – prgodz. 14: geografia – pp oraz geografia – pr* 17 środagodz. 9: język rosyjski – ppgodz. 14: język rosyjski – pr oraz język rosyjski – dj* 18 czwartekgodz. 9: fizyka i astronomia – pp oraz fizyka i astronomia / fizyka – prgodz. 14: historia muzyki – pp oraz historia muzyki – pr* 19 piątekgodz. 9: język francuski – ppgodz. 14: język francuski – pr oraz język francuski – dj* 20, 21 – sobota, niedziela* 22 poniedziałekgodz. 9: język hiszpański – ppgodz. 14: język hiszpański – pr oraz język hiszpański – dj* 23 wtorekgodz. 9: język włoski – ppgodz. 14: język włoski – pr oraz język włoski – dj* 24 środagodz. 9: języki mniejszości narodowych – pp oraz:język kaszubski – ppjęzyk kaszubski – prjęzyk łemkowski – ppjęzyk łemkowski – prgodz. 14: języki mniejszości narodowych – prgodz. 9:00 – matematyka w języku obcym dla absolwentów oddziałów dwujęzycznych (pp)**godz. 10:35 – historia w języku obcym dla absolwentów oddziałów dwujęzycznych (pr)**godz. 12:10 – geografia w języku obcym dla absolwentów oddziałów dwujęzycznych (pr)**godz. 13:45 – biologia w języku obcym dla absolwentów oddziałów dwujęzycznych (pr)**godz. 15:20 – chemia w języku obcym dla absolwentów oddziałów dwujęzycznych (pr)**godz. 16:55 – fizyka i astronomia / fizyka w języku obcym dla absolwentów oddziałówdwujęzycznych (pr)**
\n \n\n\nmatura maj 2017 zad 10
10 Matura Matura Maj Maj 2017, 2017, Poziom Poziom podstawowy podstawowy (Formuła (Formuła 2007) 2007) - Zadanie Zadanie 15. 15. (2 (2 pkt) pkt) Na schemacie przedstawiono budowę układu wydalniczego i rozrodczego mężczyzny. a) Uzupełnij poniższy schemat ilustrujący drogę wody w układzie wydalniczym człowieka.
Matura poziom rozszerzony - maj 2017 Zadania z matury rozszerzonej z matematyki 2017 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Poniżej odnośniki do zadań: Zadanie na chwilę obecną niedostępne Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
77uvd. 274 196 456 258 56 447 98 258 276

matura maj 2017 zad 10